- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Singh, Harsimranjit (2)
-
Zhuang, Shiqiang (2)
-
Ingis, Benjamin (1)
-
Lee, Eon (1)
-
Lee, Eon Soo (1)
-
Nunna, Bharath (1)
-
Nunna, Bharath Babu (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Singh, Harsimranjit; Zhuang, Shiqiang; Nunna, Bharath; Lee, Eon (, Catalysts)Here we report a nitrogen-doped graphene modified metal-organic framework (N-G/MOF) catalyst, a promising metal-free electrocatalyst exhibiting the potential to replace the noble metal catalyst from the electrochemical systems; such as fuel cells and metal-air batteries. The catalyst was synthesized with a planetary ball milling method, in which the precursors nitrogen-functionalized graphene (N-G) and ZIF-8 are ground at an optimized grinding speed and time. The N-G/MOF catalyst not only inherited large surface area from the ZIF-8 structure, but also had chemical interactions, resulting in an improved Oxygen Reduction Reaction (ORR) electrocatalyst. Thermogravimetric Analysis (TGA) curves revealed that the N-G/MOF catalyst still had some unreacted ZIF-8 particles, and the high catalytic activity of N-G particles decreased the decomposition temperature of ZIF-8 in the N-G/MOF catalyst. Also, we present the durability study of the N-G/MOF catalyst under a saturated nitrogen and oxygen environment in alkaline medium. Remarkably, the catalyst showed no change in the performance after 2000 cycles in the N2 environment, exhibiting strong resistance to the corrosion. In the O2 saturated electrolyte, the performance loss at lower overpotentials was as low compared to higher overpotentials. It is expected that the catalyst degradation mechanism during the potential cycling is due to the oxidative attack of the ORR intermediates.more » « less
An official website of the United States government
